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Goals of Differential Privacy
[..., Dwork-McSherry-Nissim-Smith “06]

- Utility: enable “statistical analysis” of datasets

- Privacy: protect “individual-level” data

[See appendix of OpenDP whitepaper for a brief primer on DP]
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Statistical Query Systems
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Existing Query Interfaces
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Why DP? Attacks on Privacy

- Re-identification: determining who is who
even after “PII” removed

- Applied to medical data [Sweeney "97], Netflix

Medication

challenge [Narayanan-Shmatikov "08], ... Tota charge

Medical Data Voter List

— [Sweeney "97]

- Database Reconstruction: reconstructing almost
the entire underlying dataset [Dinur-Nissim "03,...]

- Applied to Census releases [Garfinkel et al. “18]
and Diffix [Cohen-Nissim "19].

Attacks on
- Membership Inference: determining whether = "Aggregate”
a target individual is in the dataset Statistics

[Dwork-Smith-Steinke-Ullman-V. "15]

- Applied to genomic data [Homer et al. "08,...] and
ML as a service [Shokri et al. “17,...].




Goals of Differential Privacy
[..., Dwork-McSherry-Nissim-Smith "06]

- Utility: enable “statistical analysis” of datasets

- e.g. inference about population, ML training, descriptive statistics,
synthetic data

- Privacy: protect “individual-level” data
- against “all” attack strategies, background info.
- now accepted as a “gold standard” for protection

How to achieve?

- Inject “small” amount of random noise into statistical
computations

[See appendix of OpenDP whitepaper for a brief primer on DP]
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Differentially Private Algorithms circa 2014

- histograms [DMNS06]

- contingency tables [BCDKMTO07, GHRU11, TUV12, DNT14],

- machine learning [BDMNO05,KLNRS08],

- regression & statistical estimation [CMS11,S11,KST11,ST12,JT13]
- clustering [BDMNO0O5,NRS07]

- social network analysis
[HLMJ09,GRU11,KRSY11,KNRS13,BBDS13]

- approximation algorithms [GLMRT10]
- singular value decomposition [HR12, HR13, KT13, DTTZ14]
- streaming algorithms [DNRY10,DNPR10,MMNW11]

- mechanism design
[IMTO7,NST10,X11,NOS12,CCKMV12,HK12,KPRU12]

- synthetic data [BLR08,HR10,GGHRW14]
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Differential Privacy Deployed

U.S. Census Bureau
* “OnTheMap” commuter data [Machanavajjhala et al. *06]

* Planned: all public-use products from 2020
Decennial Census [Abowd "18]

Tech Industry

* RAPPOR for Chrome Statistics [Erlingsson et al. *14] GO gle
* Tensorflow Privacy [Abadi et al. *16,...]

®* jiOS10 and Safari [2016]

®*  Windows 10 [Ding et al. *17] =. MiCI’OSOft

Research Community
®* Numerous prototypes from individual groups




OpenDP

A community effort to build a trustworthy and open-source
suite of differential privacy tools that can be easily adopted
by custodians of sensitive data to make it available for
research and exploration in the public interest.

Why?

- Channel our collective advances on science & practice of DP
- Enable wider adoption of DP

- Address high-demand, compelling use cases

- Provide a starting point for custom DP solutions

- Identify important research directions for the field



Planned Structure

OpenDP: An Open-Source platform for Differential Privacy

OpenDP Commons: DP Library, Tools, Packages designed and built by the community

— ¢

OpenDP
Systems:
End-to-end differential
privacy systems,
usually designed and
built in a partnership
to address a
particular use case

OpenDP Library Privacy Common Testing
Budgeting Tool Documentation package
and Templates
\
rary and ather commeon

ponents used by the Systems

System 1 System 2
End-to-end Another end-
solution for to-end
deploying solution for a
OpenDP in different use
partnership case

with Microsoft

System 3

Package

Tool

w componants
developed by OpanDP
syslams contributed
back o OpenDP
Commons



Key Elements

- Use Cases

- Governance

- Programming Framework
- Statistical Functionality

- System Integrations

- Collaborations

- Community!

More details in plenaries, breakouts, and the whitepaper.



How we got here

Spring/Summer 2019

- Pitch to DP community @ Simons Institute
- Proposal to Sloan Foundation

- Funding received

- Microsoft collaboration starts

Fall/Winter 2019-2020

- Ad Hoc Design Committee meetings & workshop
- OpenDP staff hired

- Software development advances with Microsoft

Spring 2020

- Programming Framework & other elements fleshed out
- First version of system with Microsoft near completion
- Advisory Board formed

- OpenDP Community Meeting!




Where we're going

Summer 2020:
- Absorb community feedback
- Implement DP library in OpenDP Commons
- Form Ad Hoc Security Review Committee
- Find DP Applications Leader(s), COVID-19 use case
- Establish partnership model, more collaborations
- Fundraising

Fall 2020:

- Launch the OpenDP Commons with working library

- Establish Editorial Board & Committers to review contributions

- Release MVP of 1t OpenDP System, with Dataverse integration
- Second OpenDP Community Meeting

Beyond:
- Expand functionality and deployments

- Form Steering Committee
- Sustainability through community commitment



What can you do?

Follow our plans
- Many more details in the whitepapers at http://opendp.io/
- Watch for emails and posts from us

Contribute

- Participate in breakout discussions

- Send feedback & suggestions to info@opendp.io anytime
- Stay tuned for more opportunities

Collaborate
- See Collaborations plenary & breakout



http://opendp.io/
mailto:info@opendp.io

	OpenDP: an Overview
	Goals of Differential Privacy�[…, Dwork-McSherry-Nissim-Smith `06]
	Statistical Releases
	Statistical Query Systems
	Existing Query Interfaces
	Why DP?  Attacks on Privacy
	Goals of Differential Privacy�[…, Dwork-McSherry-Nissim-Smith `06]
	Differentially Private Algorithms circa 2014
	Differential Privacy Deployed
	OpenDP
	Planned Structure
	Key Elements
	How we got here
	Where we’re going
	What can you do?

